The role of CDC48 in the retro-translocation of non-ubiquitinated toxin substrates in plant cells.

نویسندگان

  • Richard S Marshall
  • Nicholas A Jolliffe
  • Aldo Ceriotti
  • Christopher J Snowden
  • J Michael Lord
  • Lorenzo Frigerio
  • Lynne M Roberts
چکیده

When the catalytic A subunits of the castor bean toxins ricin and Ricinus communis agglutinin (denoted as RTA and RCA A, respectively) are delivered into the endoplasmic reticulum (ER) of tobacco protoplasts, they become substrates for ER-associated protein degradation (ERAD). As such, these orphan polypeptides are retro-translocated to the cytosol, where a significant proportion of each protein is degraded by proteasomes. Here we begin to characterize the ERAD pathway in plant cells, showing that retro-translocation of these lysine-deficient glycoproteins requires the ATPase activity of cytosolic CDC48. Lysine polyubiquitination is not obligatory for this step. We also show that although RCA A is found in a mannose-untrimmed form prior to its retro-translocation, a significant proportion of newly synthesized RTA cycles via the Golgi and becomes modified by downstream glycosylation enzymes. Despite these differences, both proteins are similarly retro-translocated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A deubiquitinase negatively regulates retro-translocation of nonubiquitinated substrates

Endoplasmic reticulum (ER) membrane-bound E3 ubiquitin ligases promote ER-associated degradation (ERAD) by ubiquitinating a retro-translocated substrate that reaches the cytosol from the ER, targeting it to the proteasome for destruction. Recent findings implicate ERAD-associated deubiquitinases (DUBs) as positive and negative regulators during ERAD, reflecting the different consequences of deu...

متن کامل

Doa1 targets ubiquitinated substrates for mitochondria-associated degradation

Mitochondria-associated degradation (MAD) mediated by the Cdc48 complex and proteasome degrades ubiquitinated mitochondrial outer-membrane proteins. MAD is critical for mitochondrial proteostasis, but it remains poorly characterized. We identified several mitochondrial Cdc48 substrates and developed a genetic screen assay to uncover regulators of the Cdc48-dependent MAD pathway. Surprisingly, w...

متن کامل

Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation.

Cholera toxin travels from the cell surface of affected mammalian cells to the endoplasmic reticulum (ER), where the A1 chain is released and retro-translocated across the ER membrane into the cytosol. We have tested whether, as in other cases, retro-translocation requires poly-ubiquitination. We show that an A1 chain mutant that lacks lysines and has a blocked N-terminus, and therefore cannot ...

متن کامل

Cdc48 (p97): a "molecular gearbox" in the ubiquitin pathway?

Cdc48 (p97), a conserved chaperone-like ATPase of eukaryotic cells, has attracted attention recently because of its wide range of cellular functions. Cdc48 is intimately linked to the ubiquitin pathway because its primary action is to segregate ubiquitinated substrates from unmodified partners. This 'segregase' activity is crucial for certain proteasomal degradation pathways and for some nonpro...

متن کامل

Update on Plasma Membrane Receptor Complexes Plasma Membrane Receptor Complexes

Recent data on the plasma membrane (PM)-located LRR-RLKs (for Leu-rich repeat receptor-like kinases) BRI1 (for brassinosteroid insensitive 1) and the coreceptors BAK1 (for BRI1-associated kinase 1) and SERK1 (for somatic embryogenesis receptor-like kinase 1) that participate in the perception of brassinosteroids (BRs) suggest that they are organized into heterooligomeric protein complexes. Othe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 283 23  شماره 

صفحات  -

تاریخ انتشار 2008